show that any positive odd integer is the form of 6q+1,6q+3,6q+5..........
Answers
Answered by
4
let a be positive integerb=6 by euclid algorithum
a=6q+r.
r = 1,2,3,4,5
r=0
a=6q+0(even)
r=1
a=6q+1(odd)
r=2
a=6q+2(even)
r=3
a=6q+3(odd)
r=4
a=6q+4(even)
r=5
a=6q+5(odd)
so therefore any positive odd integer on form of 6q+1 ,6q+3,6q+5.
it may help you...
a=6q+r.
r = 1,2,3,4,5
r=0
a=6q+0(even)
r=1
a=6q+1(odd)
r=2
a=6q+2(even)
r=3
a=6q+3(odd)
r=4
a=6q+4(even)
r=5
a=6q+5(odd)
so therefore any positive odd integer on form of 6q+1 ,6q+3,6q+5.
it may help you...
Justin1111111:
thanks brooo
Similar questions