show that any positive odd integers is of form 4q + 3 , where is some integer.
Answers
To Show:
Any positive odd integers is of the form 4q + 1 or 4q+3 . Where q is some integers
Solution:
Let a be any positive integer.
By Euclid's Division Lemma,
a = bq + r
So, the possible remainders are 0, 1, 2 and 3.
=> a can be of the form 4q, 4q+1, 4q+2 and 4q+3.
where q is the quotient .
a is odd and hence cannot be of the form 4q or 4q + 2 as they are even.
So, a will be in the form of 4q + 1 or
4q + 3.
Hence proved.
→ Answer:
→ hey user,
→ Give Question : show that any positive odd integers is of form 4q + 3 , where is some integer.
→ Even Though we are using cases.
→ Formula used : Euclids Division Lemma
Step-by-step explanation:
→ solution : Let ' a ' be any odd ( + ) 've integer and[ b = 4 ] .
→ ⇒ [ ∵ By Using Euclid's Division Lemma ]
→ ⇒ [a = 4q + r ], 0< r < 4
→ ⇒ r = 0 , 1 , 2 , 3
→ ⇒ Now , When r = 0
→ ⇒ a = 4q [ since 4q ⇒even positive integer ]
→ ⇒ ∴ case 1 = contradicts our assumption
→ ⇒ case 1 is not true ( a ≠ 4q)
-------------------------------------------------------------------------------------------------------------
→ Now ,case 2 :
→ ⇒ when r = 1
→ ⇒ a = 4q + 1 [ 4q + 1 = odd + ve integer ].
→ ⇒ case two is true .
--------------------------------------------------------------------------------------------------------
→ Case 3 :
→ ⇒ where r = 2, then a = 4q+ 2 [ But ( 4q + 2 ) = even +ve integer.
→ ⇒ It contradicts our assumption.
→ ⇒ ∴ case 3 is not true
-----------------------------------------------------------------------------------------------------------
→ when x = 3 , a = 4q + 3 [ 4q + 3 is odd positive integer]
→ ∴ case 4 is possible.
→ [Note: + ve is a positive integer sign and - ve is a negative integer sign]
→ Also , Hence proved by Euclids Division Lemma that the case 3 is possible.
-----------------------------------------------------------------------------------------------------------
thank you.