Show that any positive odd integers is of the form 8q+1or 8q+3or8q+7.where q Is some integers
Answers
Answered by
1
Correct Question :
Show that any positive odd integer is of the form 8q + 1 or 8q + 3 or 8q + 5 or 8q + 7.
Solution :
Let ' a ' be any positive integer.
Here, b = 8 ( from question ).
BY USING EUCLID'S DIVISION LEMMA :
→ a = bq + r, where 0 ≤ r < d.
Possible values of r = 0, 1, 2, 3, 4, 5, 6 and 7.
Now,
Case : 1
a = 8q + 0 _______ [ EVEN ]
Case : 2
a = 8q + 1 ______ [ ODD ]
Case : 3
a = 8q + 2 _______ [ EVEN ]
Case : 4
a = 8q + 3 _______ [ ODD ]
Case : 5
a = 8q + 4 _______ [ EVEN ]
Case : 6
a = 8q + 5 __________ [ ODD ]
Case : 7
a = 8q + 6 ____ [ EVEN ]
Case : 8
a = 8q + 7 ________ [ ODD ]
From above, it's clear that any positive odd integer is of the form 8q + 1, 8q + 3, 8q + 5 or 8q + 7.
Similar questions