Math, asked by undertaker1023, 10 months ago

show that any positiveodd intiger is of the form 6q+1,or6q+3,or6q+5, where q is some intiger​

Answers

Answered by ShírIey
75

Correct Question:

Show that any positive odd integers in in the form of 6q + 1, 6q + 3 & 6q + 5 where q is some integer.

AnswEr :

Let us Consider that a & b are two positive integers

\large\bold{\underline{\sf{By\: Using\: Euclid's\: Division\: lemma}}}

:\implies\sf\: a = bq + r

Here, 0 < r < b & b = 6

• r can be 0,1,2,3,4 & 5

\rule{150}2

If r = 0

:\implies\sf\: a = 6q

If r = 1

:\implies\sf\: a = 6q + 1

If r = 2

:\implies\sf\: a = 6q + 2

If r = 3

:\implies\sf\: a = 6q + 3

If r = 4

:\implies\sf\: a = 6q + 4

If r = 5

:\implies\sf\: a = 6q + 5

Here, we can see that 6q, 6q +2 & 6q + 4 are even Numbers and 6q + 1, 6q + 3 & 6q + 5 are odd numbers.

Hence, any positive odd integers is in the form of 6q + 1, 6q + 3 & 6q + 5.

Answered by Anonymous
5

 \huge \mathfrak{answer}

__________________

❁Question:❁

show that any positiveodd intiger is of the form 6q+1,or6q+3,or6q+5, where q is some integer

✾step to step explanation✾

 \bf{ \:  { \boxed{ \red{ \tt{euclid \: division \: lemma \: }}}}}

 \sf{if \: a \: and \: b \: are \: positive \: integer}

then

 \rm \underline \red{a = bq + r}

where 0<r<b

let positive integer be a and b=6

so

 \sf{a = 6q + r}

where 0<r<6

r is integer greater than or equal to 0 andess than 6

so it can be 0,1,2,3,4,5

case 1

 \sf{if \: r = 1}

 \sf{a = 6q + r}

 \sf{a = 6q + 1}

case 2

 \sf{if \: r = 3}

 \sf{a = 6q + r}

 \sf{a = 6q + 3}

case 3

 \sf{if \: r = 5}

 \sf{a = 6q + r}

 \sf{a = 6q + 5}

so any odd integer is in the the form

 \sf{6q + 1 ,\: 6q + 3 ,\: 6q + 5}

hence proved

Similar questions