Math, asked by lakshit4100, 6 months ago


Show that area of equilateral triangle is√3\4a2 where a is the side of triangle​

Answers

Answered by Asterinn
6

Given :

  • Length of each side of an equilateral triangle = a units

To prove :

  • Area of equilateral triangle = (√3)/4 × a²

Proof :

To prove that area of equilateral triangle = (√3)/4 × a² , we will use heron's formula.

\setlength{\unitlength}{10mm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(5,1)\qbezier(1,1)(1,1)(3,4)\qbezier(5,1)( 5,1)(3,4) \put(2.7,4.3){\large{\bf{A}}}\put(  0.2,1){\large{\bf{B}}}\put(5.2,1) {\large{\bf{C}}}\put(1.5,3){\large{\bf{a}}}\put(5,3){\large{\bf{a}}}\put(3, 0){\large{\bf{a}}}\end{picture}

So first we will find out semi-perimeter of triangle whose length of all side is a units.

 \sf s =  \dfrac{a + a + a}{2}

where s is semi-perimeter.

\sf  \implies s =  \dfrac{3 a}{2}

Now we will find area of triangle :-

 \sf  \implies A =  \sqrt{ \dfrac{3a}{2} \bigg( \dfrac{3a}{2} - a \bigg)\bigg( \dfrac{3a}{2} - a \bigg) \bigg( \dfrac{3a}{2} - a \bigg)  }

where A = area of triangle.

\sf  \implies A =  \sqrt{ \dfrac{3a}{2} \bigg( \dfrac{3a - 2a}{2} \bigg)\bigg( \dfrac{3a - 2a}{2} \bigg) \bigg( \dfrac{3a - 2a}{2} \bigg)   }

\sf  \implies A =  \sqrt{ \dfrac{3a}{2} \bigg( \dfrac{a}{2} \bigg)\bigg( \dfrac{a}{2} \bigg) \bigg( \dfrac{a}{2} \bigg)   }

\sf  \implies A =  \sqrt{ \dfrac{3a \times a \times a \times a }{2 \times 2 \times 2 \times 2}    }

\sf  \implies A =  \sqrt{ \dfrac{3 {a}^{4}  }{ {2}^{4} }    }

\sf  \implies A = \dfrac{ {a}^{2}  }{ {2}^{2} } \sqrt{ 3}

\sf  \implies A = \dfrac{ {a}^{2}  }{ 4 } \sqrt{ 3}

\sf  \implies A =     \dfrac{\sqrt{ 3}  \: {a}^{2}  }{ 4 }

Hence proved

_____________________

\bf \underline{  \red {\bf \: Additional  \: Information}}

Heron's formula :-

Heron's formula is used to find out area of triangle if all the sides of triangle are given.

Let's take a triangle whose sides are a, b and c.

\setlength{\unitlength}{10mm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(5,1)\qbezier(1,1)(1,1)(3,4)\qbezier(5,1)( 5,1)(3,4) \put(2.7,4.3){\large{\bf{A}}}\put(  0.2,1){\large{\bf{B}}}\put(5.2,1) {\large{\bf{C}}}\put(1.5,3){\large{\bf{a}}}\put(5,3){\large{\bf{b}}}\put(3, 0){\large{\bf{c}}}\end{picture}

Now first we find semi-perimeter.

Let s be semi-perimeter.

 \sf s =  \dfrac{a + b + c}{2}

And now area (A) =

 \sf A =\sqrt{s(s - a)(s - b)(s - c)}

Similar questions