Show that AU(B-C)=(AUB)-(C-A)
Answers
Answered by
21
To prove, A U (B - C) = (A U B) - (C - A)
Proof:
L.H.S. = A U (B - C)
= A U (B ∩ Cᶜ)
= (A U B) ∩ (A U Cᶜ)
= (A U B) ∩ (Aᶜ ∩ C)ᶜ
= (A U B) - (Aᶜ ∩ C)
= (A U B) - (C ∩ Aᶜ)
= (A U B) - (C - A) = R. H. S.
Hence, proved.
Rules:
1. A - B = A ∩ Bᶜ
2. A U (B ∩ C) = (A U B) ∩ (A U C)
3. A ∩ B = B ∩ A
Homeworks for you:
1. A ∩ (B Δ C) = (A ∩ B) Δ (A ∩ C)
2. (A - C) U (B - C) = (A U B) - S
3. A ∩ (B - C) = (A ∩ B) - (A ∩ C)
Answered by
5
L.H.S. = A U (B - C)
= A U (B ∩ Cᶜ)
= (A U B) ∩ (A U Cᶜ)
= (A U B) ∩ (Aᶜ ∩ C)ᶜ
= (A U B) - (Aᶜ ∩ C)
= (A U B) - (C ∩ Aᶜ)
= (A U B) - (C - A) = R. H. S.
Similar questions