Show that (ax(bxc))xc=(a.c)(bxc) and (axb).(axc)+(a.b)(a.c)=(a.a)(b.c)
Answers
Answered by
3
Answer:
A= Ax i+Ay j+Az k
B= Bx i+By j+Bz k
C= Cx i+Cy j+Cz k
Now start with either L HS or R HS
Lets start with L.H.S
L.H.S = (A x(B x C))
First we will solve for (B x C)
(B x C) = ( ByCz - BzCy)i +(BzCx - BxCz)j+(BxCy - ByCx)k
Now we will solve for (A x(B x C))
(A x(B x C)) = (AyBxCy-AyByCx-AzBzCx+AzBxCz)i+(AzByCz-AzBzCy-AxBxCy+AxByCx)j+(AxBzCx-AxBxCz-AyByCz+AyBzCy)k ——-(1)
Now we will solve for R.H.S
R.H.S =B(A.C)-C(A.B)
=B.( AxCx +AyCy+AzCz )-C.(AxBx+AyBy+AzBz)
=(AyBxCy-AyByCx-AzBzCx+AzBxCz)i+(AzByCz-AzBzCy-AxBxCy+AxByCx)j+(AxBzCx-AxBxCz-AyByCz+AyBzCy)k —-(2)
Since equation 1 = equation 2
hence L.H.S =R.H.S
Mark as a Brainlist
Similar questions