Math, asked by aryanmudhiraj9, 5 months ago

show that (b-c)square cos square A/2+(b+c)square sin square A/2=asquar​

Answers

Answered by KhuniDarinda777
0

Answer:

we need to prove that:

(a - b)^{2} cos^{2}\frac{c}{2}+(a+b)^{2}sin^{2}\frac{c}{2} = c^{2}(a−b)

2

cos

2

2

c

+(a+b)

2

sin

2

2

c

=c

2

Left hand side

(a - b)^{2} cos^{2}\frac{c}{2}+(a+b)^{2}sin^{2}\frac{c}{2}(a−b)

2

cos

2

2

c

+(a+b)

2

sin

2

2

c

since,(a+b)^{2} =a^{2}+b^{2}+2ab\;\text{and}\;(a-b)^{2} =a^{2}+b^{2}-2ab(a+b)

2

=a

2

+b

2

+2aband(a−b)

2

=a

2

+b

2

−2ab

(a^{2} +b^{2} -2ab)cos^{2}\frac{c}{2}+(a^{2} +b^{2} -2ab)sin^{2}\frac{c}{2}(a

2

+b

2

−2ab)cos

2

2

c

+(a

2

+b

2

−2ab)sin

2

2

c

(a^{2} +b^{2})(cos^{2}\frac{c}{2}+sin^{2}\frac{c}{2})-2ab(cos^{2}\frac{c}{2}-sin^{2}\frac{c}{2})(a

2

+b

2

)(cos

2

2

c

+sin

2

2

c

)−2ab(cos

2

2

c

−sin

2

2

c

)

Since, sin^{2}\theta+cos^{2}\theta=1sin

2

θ+cos

2

θ=1 and cos^{2}\theta+sin^{2}\theta=cos2\thetacos

2

θ+sin

2

θ=cos2θ

(a^{2} +b^{2})(1)-2ab(cos c)(a

2

+b

2

)(1)−2ab(cosc)

a^{2} +b^{2}-2ab(cos c)a

2

+b

2

−2ab(cosc)

by the law of cosines (a^{2} +b^{2}-2ab(cos c)=c^{2})(a

2

+b

2

−2ab(cosc)=c

2

)

c^{2}c

2

=Right hand side

Hence, proved

Similar questions