Math, asked by sanjayganesh21, 7 months ago

show that bisectors of angles of the parallelogram forms a rectangle
please answer ​

Answers

Answered by Anonymous
3

Answer:

Solution:

\sf{Let \ \angle DAB \ be \ 2x \ and \ \angle CBA}

\sf{be \ 2y}

\sf{In \ parallelogram \ opposite \ angles}

\sf{are \ congruent.}

\sf{\therefore{\angle DAB=\angle BCD=2x,}}

\sf{\angle CBA=\angle CDA}

\sf{In \ parallelogram \ sum \ of \ adjacent}

\sf{angles \ is \ 180^\circ}

\sf{\therefore{\angle DAB+\angle CBA=180^\circ}}

\sf{\therefore{2x+2y=180^\circ}}

\boxed{\sf{\therefore{x+y=90^\circ}}}

\textsf{In parallelogram ABCD,}

\sf{Seg \ AJ \ bisects \ \angle DAB,}

\sf{Seg \ DI \ bisects \ \angle CDA,}

\sf{Seg \ CL \ bisects \ \angle BCD,}

\sf{Seg \ BK \ bisects \ \angle CBA}

\sf{Now,}

\sf{In \ \triangle AID,}

\sf{\angle IDA=x}

\sf{\angle ADI=y,}

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}

\sf{\therefore{\angle IDA+\angle ADI+\angle AID=180^\circ}}

\sf{\therefore{x+y+\angle AID=180^\circ}}

\sf{But, \ x+y=90^\circ}

\sf{\therefore{90^\circ+\angle AID=180^\circ}}

\sf{\therefore{\angle AID=90^\circ}}

\sf{By \ linear \ pair \ axiom}

\sf{\angle AID+\angle LIJ=180^\circ}

\sf{\therefore{90^\circ+\angle LIJ=180^\circ}}

\boxed{\sf{\therefore{\angle LIJ=90^\circ...(1)}}}

\sf{In \ \triangle BJA,}

\sf{\angle JBA=y,}

\sf{\angle JAB=x}

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}

\sf{x+y+\angle BJA=180^\circ}

\sf{\therefore{BJA=90^\circ}}

\sf{By \ linear \ pair \ axiom }

\boxed{\sf{\angle IJK=90^\circ...(2)}}

\sf{In \ \triangle BKC,}

\sf{\angle KBC=y,}

\sf{\angle KCB=x}

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}

\sf{x+y+\angle BKC=180^\circ}

\sf{\therefore{\angle BKC=90^\circ}}

\sf{By \ linear \ pair \ axiom}

\boxed{\sf{\angle JKL=90^\circ...(3)}}

\sf{In \ \triangle CLD,}

\sf{\angle LCD=x,}

\sf{\angle LDC=y}

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}

\sf{x+y+\angle CLD=180^\circ}

\sf{\therefore{\angle CLD=90^\circ}}

\sf{By \ linear \ pair \ axiom}

\boxed{\sf{\angle \ LKJ=90^\circ...(4)}}

\sf{In \ \square IJKL,}

\sf{From \ (1), \ (2), \ (3) \ and \ (4) \ we \ get}

\sf{\angle LIJ=90^\circ,}

\sf{\angle IJK=90^\circ,}

\sf{\angle JKL=90^\circ,}

\sf{\angle LKJ=90^\circ}

\sf{Since, all \ angles \ of \ \square  IJKL}

\sf{are \ of \ 90^\circ \ we \ can \ say}

\sf{\square IJKL \ is \ a \ rectangle.}

\sf{Hence \ proved,}

\sf\purple{\tt{Bisectors \ of \ angles \ of \ the}}

\sf\purple{\tt{parallelogram \ form \ a \ rectangle.}}

Attachments:
Answered by brajesh75
0

Step-by-step explanation:

Answer:

Solution:

\sf{Let \ \angle DAB \ be \ 2x \ and \ \angle CBA}Let ∠DAB be 2x and ∠CBA

\sf{be \ 2y}be 2y

\sf{In \ parallelogram \ opposite \ angles}In parallelogram opposite angles

\sf{are \ congruent.}are congruent.

\sf{\therefore{\angle DAB=\angle BCD=2x,}}∴∠DAB=∠BCD=2x,

\sf{\angle CBA=\angle CDA}∠CBA=∠CDA

\sf{In \ parallelogram \ sum \ of \ adjacent}In parallelogram sum of adjacent

\sf{angles \ is \ 180^\circ}angles is 180

\sf{\therefore{\angle DAB+\angle CBA=180^\circ}}∴∠DAB+∠CBA=180

\sf{\therefore{2x+2y=180^\circ}}∴2x+2y=180

\boxed{\sf{\therefore{x+y=90^\circ}}}

∴x+y=90

\textsf{In parallelogram ABCD,}In parallelogram ABCD,

\sf{Seg \ AJ \ bisects \ \angle DAB,}Seg AJ bisects ∠DAB,

\sf{Seg \ DI \ bisects \ \angle CDA,}Seg DI bisects ∠CDA,

\sf{Seg \ CL \ bisects \ \angle BCD,}Seg CL bisects ∠BCD,

\sf{Seg \ BK \ bisects \ \angle CBA}Seg BK bisects ∠CBA

\sf{Now,}Now,

\sf{In \ \triangle AID,}In △AID,

\sf{\angle IDA=x}∠IDA=x

\sf{\angle ADI=y,}∠ADI=y,

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180

\sf{\therefore{\angle IDA+\angle ADI+\angle AID=180^\circ}}∴∠IDA+∠ADI+∠AID=180

\sf{\therefore{x+y+\angle AID=180^\circ}}∴x+y+∠AID=180

\sf{But, \ x+y=90^\circ}But, x+y=90

\sf{\therefore{90^\circ+\angle AID=180^\circ}}∴90

+∠AID=180

\sf{\therefore{\angle AID=90^\circ}}∴∠AID=90

\sf{By \ linear \ pair \ axiom}By linear pair axiom

\sf{\angle AID+\angle LIJ=180^\circ}∠AID+∠LIJ=180

\sf{\therefore{90^\circ+\angle LIJ=180^\circ}}∴90

+∠LIJ=180

\boxed{\sf{\therefore{\angle LIJ=90^\circ...(1)}}}

∴∠LIJ=90

...(1)

\sf{In \ \triangle BJA,}In △BJA,

\sf{\angle JBA=y,}∠JBA=y,

\sf{\angle JAB=x}∠JAB=x

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180

\sf{x+y+\angle BJA=180^\circ}x+y+∠BJA=180

\sf{\therefore{BJA=90^\circ}}∴BJA=90

\sf{By \ linear \ pair \ axiom }By linear pair axiom

\boxed{\sf{\angle IJK=90^\circ...(2)}}

∠IJK=90

...(2)

\sf{In \ \triangle BKC,}In △BKC,

\sf{\angle KBC=y,}∠KBC=y,

\sf{\angle KCB=x}∠KCB=x

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180

\sf{x+y+\angle BKC=180^\circ}x+y+∠BKC=180

\sf{\therefore{\angle BKC=90^\circ}}∴∠BKC=90

\sf{By \ linear \ pair \ axiom}By linear pair axiom

\boxed{\sf{\angle JKL=90^\circ...(3)}}

∠JKL=90

...(3)

\sf{In \ \triangle CLD,}In △CLD,

\sf{\angle LCD=x,}∠LCD=x,

\sf{\angle LDC=y}∠LDC=y

\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180

\sf{x+y+\angle CLD=180^\circ}x+y+∠CLD=180

\sf{\therefore{\angle CLD=90^\circ}}∴∠CLD=90

\sf{By \ linear \ pair \ axiom}By linear pair axiom

\boxed{\sf{\angle \ LKJ=90^\circ...(4)}}

∠ LKJ=90

...(4)

\sf{In \ \square IJKL,}In □IJKL,

\sf{From \ (1), \ (2), \ (3) \ and \ (4) \ we \ get}From (1), (2), (3) and (4) we get

\sf{\angle LIJ=90^\circ,}∠LIJ=90

,

\sf{\angle IJK=90^\circ,}∠IJK=90

,

\sf{\angle JKL=90^\circ,}∠JKL=90

,

\sf{\angle LKJ=90^\circ}∠LKJ=90

\sf{Since, all \ angles \ of \ \square IJKL}Since,all angles of □IJKL

\sf{are \ of \ 90^\circ \ we \ can \ say}are of 90

we can say

\sf{\square IJKL \ is \ a \ rectangle.}□IJKL is a rectangle.

\sf{Hence \ proved,}Hence proved,

\sf\purple{\tt{Bisectors \ of \ angles \ of \ the}}

Similar questions