show that bisectors of angles of the parallelogram forms a rectangle
please answer
Answers
Answered by
3
Answer:
Solution:
Attachments:
Answered by
0
Step-by-step explanation:
Answer:
Solution:
\sf{Let \ \angle DAB \ be \ 2x \ and \ \angle CBA}Let ∠DAB be 2x and ∠CBA
\sf{be \ 2y}be 2y
\sf{In \ parallelogram \ opposite \ angles}In parallelogram opposite angles
\sf{are \ congruent.}are congruent.
\sf{\therefore{\angle DAB=\angle BCD=2x,}}∴∠DAB=∠BCD=2x,
\sf{\angle CBA=\angle CDA}∠CBA=∠CDA
\sf{In \ parallelogram \ sum \ of \ adjacent}In parallelogram sum of adjacent
\sf{angles \ is \ 180^\circ}angles is 180
∘
\sf{\therefore{\angle DAB+\angle CBA=180^\circ}}∴∠DAB+∠CBA=180
∘
\sf{\therefore{2x+2y=180^\circ}}∴2x+2y=180
∘
\boxed{\sf{\therefore{x+y=90^\circ}}}
∴x+y=90
∘
\textsf{In parallelogram ABCD,}In parallelogram ABCD,
\sf{Seg \ AJ \ bisects \ \angle DAB,}Seg AJ bisects ∠DAB,
\sf{Seg \ DI \ bisects \ \angle CDA,}Seg DI bisects ∠CDA,
\sf{Seg \ CL \ bisects \ \angle BCD,}Seg CL bisects ∠BCD,
\sf{Seg \ BK \ bisects \ \angle CBA}Seg BK bisects ∠CBA
\sf{Now,}Now,
\sf{In \ \triangle AID,}In △AID,
\sf{\angle IDA=x}∠IDA=x
\sf{\angle ADI=y,}∠ADI=y,
\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180
∘
\sf{\therefore{\angle IDA+\angle ADI+\angle AID=180^\circ}}∴∠IDA+∠ADI+∠AID=180
∘
\sf{\therefore{x+y+\angle AID=180^\circ}}∴x+y+∠AID=180
∘
\sf{But, \ x+y=90^\circ}But, x+y=90
∘
\sf{\therefore{90^\circ+\angle AID=180^\circ}}∴90
∘
+∠AID=180
∘
\sf{\therefore{\angle AID=90^\circ}}∴∠AID=90
∘
\sf{By \ linear \ pair \ axiom}By linear pair axiom
\sf{\angle AID+\angle LIJ=180^\circ}∠AID+∠LIJ=180
∘
\sf{\therefore{90^\circ+\angle LIJ=180^\circ}}∴90
∘
+∠LIJ=180
∘
\boxed{\sf{\therefore{\angle LIJ=90^\circ...(1)}}}
∴∠LIJ=90
∘
...(1)
\sf{In \ \triangle BJA,}In △BJA,
\sf{\angle JBA=y,}∠JBA=y,
\sf{\angle JAB=x}∠JAB=x
\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180
∘
\sf{x+y+\angle BJA=180^\circ}x+y+∠BJA=180
∘
\sf{\therefore{BJA=90^\circ}}∴BJA=90
∘
\sf{By \ linear \ pair \ axiom }By linear pair axiom
\boxed{\sf{\angle IJK=90^\circ...(2)}}
∠IJK=90
∘
...(2)
\sf{In \ \triangle BKC,}In △BKC,
\sf{\angle KBC=y,}∠KBC=y,
\sf{\angle KCB=x}∠KCB=x
\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180
∘
\sf{x+y+\angle BKC=180^\circ}x+y+∠BKC=180
∘
\sf{\therefore{\angle BKC=90^\circ}}∴∠BKC=90
∘
\sf{By \ linear \ pair \ axiom}By linear pair axiom
\boxed{\sf{\angle JKL=90^\circ...(3)}}
∠JKL=90
∘
...(3)
\sf{In \ \triangle CLD,}In △CLD,
\sf{\angle LCD=x,}∠LCD=x,
\sf{\angle LDC=y}∠LDC=y
\sf{Sum \ of \ all \ angles \ of \ triangle=180^\circ}Sum of all angles of triangle=180
∘
\sf{x+y+\angle CLD=180^\circ}x+y+∠CLD=180
∘
\sf{\therefore{\angle CLD=90^\circ}}∴∠CLD=90
∘
\sf{By \ linear \ pair \ axiom}By linear pair axiom
\boxed{\sf{\angle \ LKJ=90^\circ...(4)}}
∠ LKJ=90
∘
...(4)
\sf{In \ \square IJKL,}In □IJKL,
\sf{From \ (1), \ (2), \ (3) \ and \ (4) \ we \ get}From (1), (2), (3) and (4) we get
\sf{\angle LIJ=90^\circ,}∠LIJ=90
∘
,
\sf{\angle IJK=90^\circ,}∠IJK=90
∘
,
\sf{\angle JKL=90^\circ,}∠JKL=90
∘
,
\sf{\angle LKJ=90^\circ}∠LKJ=90
∘
\sf{Since, all \ angles \ of \ \square IJKL}Since,all angles of □IJKL
\sf{are \ of \ 90^\circ \ we \ can \ say}are of 90
∘
we can say
\sf{\square IJKL \ is \ a \ rectangle.}□IJKL is a rectangle.
\sf{Hence \ proved,}Hence proved,
\sf\purple{\tt{Bisectors \ of \ angles \ of \ the}}
Similar questions