Show that
C₀ + C₂ + C₄ + C₆ + C₈ = C₁ + C₃ + C₅ + C₇ = 128
Answers
Answered by
34
Hi,
Consider the expansion of (1 + x)⁸ = C₀ + C₁x + C₂x² + C₃x³ + C₄x⁴ + C₅x⁵
+ C₆x⁶ + C₇x⁷ + C₈x⁸-------------------(1)
Substituting x = -1 in the above expression , we get
(1 - 1)⁸ = C₀ - C₁ + C₂ - C₃ + C₄ - C₅ + C₆ - C₇ + C₈
⇒C₀ - C₁ + C₂ - C₃ + C₄ - C₅ + C₆ - C₇ + C₈ = 0
⇒C₀ + C₂ + C₄ + C₆ + C₈ = C₁ + C₃ + C₅ + C₇ -------(2)
Substituting x = 1 in (1), we get
(1 + 1)⁸ = C₀ + C₁ + C₂ + C₃ + C₄ + C₅ + C₆ + C₇ + C₈
⇒C₀ + C₁ + C₂ + C₃ + C₄ + C₅ + C₆ + C₇ + C₈ = 256
⇒(C₀ + C₂ + C₄ + C₆ + C₈) + (C₁ + C₃ + C₅ + C₇) = 256
Using (2), we get
C₀ + C₂ + C₄ + C₆ + C₈ = (C₁ + C₃ + C₅ + C₇) = 128
Hope, it helps !
please mark on brilliant answer !
Similar questions