Show that
C₁ + C₂ + C₃ + ... + C₆ = 63
Answers
Answered by
2
Answer:
⁶C₁ + ⁶C₂ + ⁶C₃ + ⁶C₄ + ⁶C₅ + ⁶C₆ = 63
Step-by-step explanation:
⁶C₁ + ⁶C₂ + ⁶C₃ + ⁶C₄ + ⁶C₅ + ⁶C₆ = 63
ⁿCₓ = n!/(x!(n-x)!)
LHS
= 6!/(1!(6-1)!) + 6!/(2!(6-2)!) + 6!/(3!(6-3)!) + 6!/(4!(6-4)!) + 6!/(5!(6-5)!) + 6!/(6!(6-6)!)
= 6!/(1!5!) + 6!/(2!4!) + 6!/(3!4!) + 6!/(4!2!) + 6!/(5!1!) + 6!/(6!0!)
= 6 + 6*5/2 + 6*5*4/(3*2*1) + 6*5/2 + 6 + 1
= 6 + 15 + 20 + 15 + 6 + 1
=63
= RHS
Hence
⁶C₁ + ⁶C₂ + ⁶C₃ + ⁶C₄ + ⁶C₅ + ⁶C₆ = 63
or we can say that
⁶C₁ + ⁶C₂ + ⁶C₃ + ⁶C₄ + ⁶C₅ + ⁶C₆ is
expansion of ( x + y) ⁶ where x & y = 1
= ( 1 + 1)⁶
= 2⁶
= 64
Similar questions