Math, asked by PAKIZAALI, 7 months ago

show that cos 0/1-sin0 +cos0/1-sin0 = 2sec0​

Answers

Answered by prince5132
5

CORRECT QUESTION :-

\\ \red \bigstar \displaystyle \tt \: prove \: that \:  \dfrac{ \cos \theta }{1 +  \sin \theta }  + \dfrac{ \cos \theta }{1   -    \sin \theta }  = 2 \sec \theta \\  \\

GIVEN :-

 \\ \red \bigstar \displaystyle \tt \:  \dfrac{ \cos \theta }{1 +  \sin \theta }  + \dfrac{ \cos \theta }{1   -    \sin \theta }  = 2 \sec \theta \\  \\

TO PROVE :-

\\ \red \bigstar \displaystyle \tt \:  \dfrac{ \cos \theta }{1 +  \sin \theta }  + \dfrac{ \cos \theta }{1   -    \sin \theta }  = 2 \sec \theta \\  \\

SOLUTION :-

\\ \red \bigstar \:  \displaystyle \tt \:  \dfrac{ \cos \theta }{1 +  \sin \theta }  + \dfrac{ \cos \theta }{1   -    \sin \theta }  = 2 \sec \theta \\

Take L.H.S Part,

\\ \implies \displaystyle \tt \:  \dfrac{ \cos \theta }{1 +  \sin \theta }  + \dfrac{ \cos \theta }{1   -    \sin \theta }  \\  \\

\blue \bigstar \orange{ \tt \: Taking \:  L.C.M \bigg(1 + \sin \theta\bigg)\bigg(1 - \sin \theta\bigg)} \\  \\

\implies \displaystyle \tt \:  \dfrac{ \cos  \theta\bigg(1 -  \sin \theta \bigg)  +  \cos \theta  \bigg(1 +  \sin \theta \bigg)} { \bigg(1   +    \sin \theta \bigg) \bigg(1  -  \sin \theta \bigg) }  \\  \\

  \displaystyle  \tt \implies \:  \dfrac{ \cos \theta -  \cos \theta. \sin \theta +  \cos \theta +  \cos \theta.  \sin \theta}{\bigg(1 + \sin \theta\bigg)\bigg(1 - \sin \theta\bigg)} \\  \\

\blue   \bigstar \orange{\tt Using \:  identity :- (a + b)(a -b) = a^{2} - b^{2}} \\  \\

 \implies \displaystyle \tt \:  \dfrac{ \cos \theta  +  \cos \theta}{(1) ^{2} -  \sin ^{2} \theta  }  \\  \\

\implies \displaystyle \tt \:   \dfrac{2 \cos \theta}{1 -  \sin ^{2} \theta }  \\  \\

\blue  \bigstar \orange{\tt Using \:  identity :- 1 -  \sin ^{2}  \theta = \cos ^{2} \theta } \\  \\

\implies \displaystyle \tt \: \dfrac{2\cos \theta}{ \cos ^{2}\theta}  \\  \\

\implies \displaystyle  \boxed{\tt  \:2 \sec \theta} \\  \\

L.H.S = R.H.S

HENCE VERIFIED ✅

Similar questions