show that cos÷1+sin=1-sin÷cos
Answers
Answer:
cosx+cosx1−sinx=2secx Proved.
Step-by-step explanation:
Consider the provided equation.
\frac{\cos x}{1-\sin x} +\frac{1-\sin x}{\cos x} =2\sec x1−sinxcosx+cosx1−sinx=2secx
Consider the LHS.
\frac{\cos x}{1-\sin x} +\frac{1-\sin x}{\cos x}1−sinxcosx+cosx1−sinx
\frac{\cos^2 x+(1-\sin x)^2}{\cos x(1-\sin x)}cosx(1−sinx)cos2x+(1−sinx)2
\frac{\cos^2 x+1+\sin^2 x-2\sin x}{\cos x(1-\sin x)}cosx(1−sinx)cos2x+1+sin2x−2sinx
Use the identity sin²x+cos²x=1
\frac{1+1-2\sin x}{\cos x(1-\sin x)}cosx(1−sinx)1+1−2sinx
\frac{2-2\sin x}{\cos x(1-\sin x)}cosx(1−sinx)2−2sinx
\frac{2(1-\sin x)}{\cos x(1-\sin x)}cosx(1−sinx)2(1−sinx)
\frac{2}{\cos x}cosx2
2\sec x2secx
LHS=RHS
Hence, proved
#Learn more
Cos a /1 +sin a +1+sin a/cos a = 2 sec a
https://brainly.in/question/3856518
Refer attachment for your answer...