Show that cos 16 + sin 16 ÷ cos 16 - sin 16 = tan 61
Answers
Answer:
hey here is your proof in above pics
pls mark it as brainliest
Answer:
cos 16 + sin 16 ÷ cos 16 - sin 16 = tan 61
Step-by-step explanation:
Given that cos 16 + sin 16 ÷ cos 16 - sin 16 = tan 61
taking LHS cos 16 + sin 16 ÷ cos 16 - sin 16
rewrite as 16 = 61-45
= cos (62 - 45) + sin (61 - 45) ÷ cos (61 - 45) - sin(61 - 45)
we know that cos (a - b) = (cos a) (cos b) + (sin a) (sin b)
sin(a - b) = (sin a) (cos b) - (cos a) (sin b)
using the above formula the equation can be rewritten as
=>((cos 61)(sin 45)+(sin 61)(sin 45)+(sin 61)(cos 45)+(cos 61)(sin 45)) ÷ (cos 61)((cos 45)+(sin 61)(sin 45)-(sin 61)(cos 45)- (cos 61)(sin 45))
=>((cos 61)(cos 45)+(sin 61)(sin 45)+(sin 61)(cos 45) - (cos 61)(sin 45)) ÷ ((cos 61)(cos 45)+ (sin 61)(sin 45) - (sin 61)(cos 45) +(cos 61)(sin 45))
after cancelling the terms the equation is:
=>(1/√2) (sin 61) + (1/√2) (sin 61) ÷(1/√2) (cos 61) + (1/√2) (cos 61)
=> ((2 sin 61)/√2)÷((2 cos 61)/√2)
=>(2 sin 61) ÷ (2 cos 61)
=> sin 61÷cos 61
=>tan 61 (hence proved)
To know more about trignometric equations visit the link below:
https://brainly.in/question/17745887
https://brainly.in/question/7623361