Math, asked by vedanthdev147, 5 months ago

show that Cos 2 θ = 2 cos^2 θ - 1​

Answers

Answered by Anonymous
6

☆Answer☆

To Prove:-

Cos() = 2Cos²θ – 1

Solution:-

Cos(2θ) = Cos(θ+θ)

We have a identity,

Cos(A+B) = CosA.CosB – SinA.SinB

Now,

Cos(θ+θ) = CosθCosθ – SinθSinθ

Cos2θ = Cos²θ - Sin²θ

Using an identity, we have

Sin²θ+Cos²θ = 1

Sin²θ = 1-Cos²θ

So,

Cos(2θ) = Cos²θ-( 1-Cos²θ )

Cos2θ = Cos²θ - 1 + Cos²θ

Cos(2θ) = 2Cos²θ-1

LHS = RHS

Proved.

Answered by Seafairy
162

Given :

\cos 2\theta = 2\cos^2\theta-1

To Find :

\text{Show that RHS = LHS}

Explanation :

We can prove given equations by applying some trigonometric identities.

Solution :

\text{RHS}=\cos2\theta

\implies \cos (\theta+\theta)

\implies \cos \theta\cos\theta-\sin\theta\sin\theta

(\because \cos(A+B)=\cos A \cos B-\sin A \sin B)

\implies \cos^2A-\sin^2A

\implies \cos^2A-(1-\cos ^2A)

(\because \sin^2A=1-\cos ^2 A)

\implies \cos^2A-1+\cos^2A

\implies 2\cos^2 A-1 = \text{LHS}

Hence Showed

Similar questions