Math, asked by Anonymous, 1 year ago

Show that cos 2 (45 + theta) + cos 2 (45 - theta) / tan (60 + theta) tan (30 - theta) = 1

Answers

Answered by Anonymous
45

Answer:-

Given:-

\frac{cos^2(45\°+\theta)+cos^2(45\°-\theta)}{tan(60\°+\theta).tan(30\°-\theta)}

To Prove:-

\frac{cos^2(45\°+\theta)+cos^2(45\°-\theta)}{tan(60\°+\theta).tan(30\°-\theta)} =1

Solution:-

we will take,

L.H.S = \frac{cos^2(45\°+\theta)+cos^2(45\°-\theta)}{tan(60\°+\theta).tan(30\°-\theta)}

\frac{cos^2(45\°+\theta)[sin(90\°-(45\°-\theta))]}{tan(60\°+\theta).cot(90\°-(30\°-\theta))}

                      [sin(90\°-\theta)=cos\theta \: and \: cot(90\°-\theta)=tan\theta]

\frac{cos^2(45\°+\theta)+sin^2(45\°+\theta)}{tan(60\°+\theta).cot(60\°+\theta)}

                      [sin^2\theta+cos^2\theta=1]

\frac{1}{tan(60\°+\theta).\frac{1}{tan(60\°+\theta)} } = 1.

                      [cot\theta=\frac{1}{tan\theta} ]

L.H.S=R.H.S

Hence, \: Proved


Anonymous: nice
Answered by Anonymous
15

Answer

LHS =cos^2(45 + theta) + sin^2{90 - (45 -theta)} / tan(60 + theta) cot{90 - (30 - theta)}

=cos^2(45 + theta) + sin^2(90 - 45 + theta) / tan(60 + theta) cot(90 - 30 + theta)

=cos^2(45 + theta) + sin^2(45 + theta) / tan(60 + theta) cot(60 + theta)

= 1 / 1

LHS = 1 = RHS


sachinsingh62: hii
Similar questions