show that [cos^2(45+thita) + cos^2(45-thita)]/[tan(60+thita)tan(30-thita)] =1
Answers
Answered by
1
Step-by-step explanation:
when A+B=90°
cos²A+cos²B=1 --> (1)
[proof: cos²A+cos²B
cos²A+cos²(90-A)
cos²A+sin²A
=1]
A+B
(45+thita)+(45-thita)=90°
so,cos^2(45+thita) + cos^2(45-thita)=1
tan(thita)= cot(90-thita)
tan(30-thita)=cot(90-(30-thita))
=cot(60+thita)
=1/tan(60+thita) -->(2)
consider LHS
[cos^2(45+thita) + cos^2(45-thita)]/[tan(60+thita)tan(30-thita)]
from (1) and (2)
1/1
=1(R.H.S)
Similar questions