Show that cos^2(45+x)-sin^2(45-x)=0 .
Answers
Answered by
16
LHS = cos^2 ( 45+x)
= (cos{45+x})^2
= {sin(90-(45+x))}^2
= { sin ( 45 - x)}^2
= sin^2 ( 45-x)
= RHS
Hence,proved.
= (cos{45+x})^2
= {sin(90-(45+x))}^2
= { sin ( 45 - x)}^2
= sin^2 ( 45-x)
= RHS
Hence,proved.
dhruvsh:
hiii
Answered by
1
Step-by-step explanation:
LHS= cos²(45+x) - sin²(45-x)
(cos(45+x))²-(sin(45-x))²
=(cos(45+x))² - (sin(1×90-(45+x)))²
=(cos(45+x))² - (cos(45+x))²
=cos²(45+x) - cos²(45+x)
=0 = RHS (proved)
Similar questions
Math,
7 months ago
English,
7 months ago
CBSE BOARD X,
1 year ago
Math,
1 year ago
History,
1 year ago