Show that cos ²(45°+ϴ)+cos²(45° - ϴ) / tan(60° +ϴ) tan(30 - ϴ) = 1
(Class 10 Maths Sample Question Paper)
Answers
Answered by
104
SOLUTION:
LHS = cos ²(45°+ϴ) + cos²(45° - ϴ) / tan(60° +ϴ) tan(30 - ϴ) = 1
= sin²[90° - (45°+ϴ)]+ cos²(45° - ϴ) / cot [90° - (60° +ϴ)] tan(30 - ϴ)
[ Cosϴ= sin(90°-ϴ) & cot ϴ= tan (90°-ϴ)]
= sin²(45°-ϴ)+ cos²(45° - ϴ) / cot 30° - ϴ)] tan(30° - ϴ)
= 1/1 = RHS
[ sin²ϴ + cos²ϴ= 1 and tanϴcotϴ=1]
HOPE THIS WILL HELP YOU...
LHS = cos ²(45°+ϴ) + cos²(45° - ϴ) / tan(60° +ϴ) tan(30 - ϴ) = 1
= sin²[90° - (45°+ϴ)]+ cos²(45° - ϴ) / cot [90° - (60° +ϴ)] tan(30 - ϴ)
[ Cosϴ= sin(90°-ϴ) & cot ϴ= tan (90°-ϴ)]
= sin²(45°-ϴ)+ cos²(45° - ϴ) / cot 30° - ϴ)] tan(30° - ϴ)
= 1/1 = RHS
[ sin²ϴ + cos²ϴ= 1 and tanϴcotϴ=1]
HOPE THIS WILL HELP YOU...
Answered by
15
Answer:
here is your answer..........
Attachments:
Similar questions