show that cos 2(45°+θ)+cos2(45°−θ)/tan(60°+θ)tan(30°−θ)= 1
Answers
Answer:
Step-by-step explanation:
LHS = cos ²(45°+ϴ) + cos²(45° - ϴ) / tan(60° +ϴ) tan(30 - ϴ) = 1
= sin²[90° - (45°+ϴ)]+ cos²(45° - ϴ) / cot [90° - (60° +ϴ)] tan(30 - ϴ)
[ Cosϴ= sin(90°-ϴ) & cot ϴ= tan (90°-ϴ)]
= sin²(45°-ϴ)+ cos²(45° - ϴ) / cot 30° - ϴ)] tan(30° - ϴ)
= 1/1 = RHS
[ sin²ϴ + cos²ϴ= 1 and tanϴcotϴ=1]
HOPE THIS WILL HELP YOU...
Solution:
To Show:
\dfrac{cos^2(45+\theta)+cos^2(45-\theta)}{tan(60+\theta).tan(30-\theta)}=1
tan(60+θ).tan(30−θ)
cos
2
(45+θ)+cos
2
(45−θ)
=1
Formulas Used:
\begin{gathered}cosA=sin(90-A)\\\\tanA=cot(90-A)\\\\cos^2A+sin^2A=1\\\\tanA.cotA=1\end{gathered}
cosA=sin(90−A)
tanA=cot(90−A)
cos
2
A+sin
2
A=1
tanA.cotA=1
Proof:
Taking Left Hand Side,\begin{gathered}\dfrac{cos^2(45+\theta)+cos^2(45-\theta)}{tan(60+\theta).tan(30-\theta)}\\\\\\=\dfrac{cos^(45+\theta)+sin^2(90-45+\theta)}{tan(60+\theta).cot(90-30+\theta)}\\\\\\=\dfrac{cos^2(45+\theta)+sin^2(45+\theta)}{tan(60+\theta).cot(60+\theta)}\\\\\\=\dfrac{1}{1}\\\\\\=1\end{gathered}
tan(60+θ).tan(30−θ)
cos
2
(45+θ)+cos
2
(45−θ)
=
tan(60+θ).cot(90−30+θ)
cos
(
45+θ)+sin
2
(90−45+θ)
=
tan(60+θ).cot(60+θ)
cos
2
(45+θ)+sin
2
(45+θ)
=
1
1
=1
Right Hand Side = Left Hand Side.
Hence Proved.