Math, asked by hardikj230ovoy7w, 1 year ago

show that cos 20 . cos 40 .cos 60 .cos 80 = 1/16​

Answers

Answered by pragya80
3
your question is solved above
Attachments:

hardikj230ovoy7w: Sorry to say.... but illogical answer
hardikj230ovoy7w: still thank you for your help
pragya80: how
pragya80: where's my fault
Answered by Anonymous
9

\mathcal\red{\underline{Question:-}}

Show that cos 20° cos 40° cos 60° cos 80° = \frac{1}{16}

\mathcal\red{\underline{Solution:-}}

cos 20° cos 40° cos 60° cos 80°

= cos 60° ( cos 20° cos 60° ) cos 80°

= \frac{1}{2} × \frac{1}{2}( 2 cos 20° cos 40°) cos 80°

{ °•° cos 60° = \frac{1}{2}}

= \frac{1}{4} [{ cos ( 40° + 20° ) + cos ( 40° - 20° )} cos 80° ]

{ °•° 2 cos A cos B = cos ( A+B ) cos (A-B) ]

= \frac{1}{4} [( cos 60° + cos 20° ) cos 80° ]

= \frac{1}{4} [( 1/2 + cos 20° ) cos 80° ]

= \frac{1}{8} ( cos 80° + 2 cos 80° cos 20° )

= \frac{1}{8}[ cos 80° + { cos ( 80° + 20° ) cos ( 80° - 20° )}]

{ °•° 2 cos A cos B = cos ( A+B ) cos ( A-B )]

= \frac{1}{8} [ cos 80° + cos 100° + cos 60° ]

= \frac{1}{8}[ cos 80° + cos ( 180° - 100° ) + cos 60° ]

= \frac{1}{8} [ cos 80° - cos 80° + cos 60° ]

= \frac{1}{8} \: {[}\:\frac{1}{2} ]

= \frac{1}{8}×\frac{1}{2}

= \frac{1}{16}

\mathcal\red{Thank\:You}

Similar questions