Math, asked by girlr0e8eksharma, 1 year ago

Show that cos 24 + cos 55 + cos 125 + cos 204 + cos 300= 1/2

Answers

Answered by mysticd
755
lhs =cos 24+cos 55+cos 125+cos 204+cos 300
= cos 24 +cos 55 +cos (180-55)+cos (180-24)+cos(270+30)
= cos 24 +cos 55-cos 55-cos24+sin30
=sin 30
=1/2
=rhs
Answered by abhijattiwari1215
1

Answer:

cos 24⁰ + cos 55⁰ + cos 125⁰ + cos 204⁰ + cos 300⁰ = 1/2 .

Step-by-step explanation:

  • We know that :

 \cos( \alpha ) =   \cos( \alpha )  \\  \cos(\pi  - \alpha )  =  -  \cos( \alpha )  \\  \cos(\pi +  \alpha )  =  -   \cos( \alpha ) \\  \cos(2\pi -  \alpha )  =  \cos( \alpha )

  • i.e. cosine of an angle is positive in 1st and 4th quadrant and negative in 2nd and 3rd quadrant.

Given that :

  • L.H.S. = cos 24⁰ + cos 55⁰ + cos 125⁰ + cos 204⁰ + cos 300⁰

Solution:

  • cos 125⁰ = cos ( 180⁰ - 55⁰ ) = - cos 55⁰
  • cos 204⁰ = cos ( 180⁰ + 24⁰ ) = - cos 24⁰
  • cos 300⁰ = cos ( 360⁰ - 300⁰ ) = cos 60⁰
  • putting above values in L.H.S. , we get

  = \cos{24}^{0} +  \cos {55}^{0}  -  \cos {55}^{0}  -  \cos {24}^{0} +  \cos {60}^{0} \\  =  \cos{60}^{0} \\  =  \frac{1}{2}

  • L.H.S. = R.H.S.
  • Hence, cos 24⁰ + cos 55⁰ + cos 125⁰ + cos 204⁰ + cos 300⁰ = 1/2 .

Similar questions