show that
Cos 2A / (1+Sin2A)= Tan (45-A)
Answers
Answered by
1
Answer:
I don no maths sorry yar
Answered by
0
Cos2A=(cosA^2-sinA^2)= cosA^2( 1-tanA^2) =1-tanA^2/(secA^2).
=1-tanA^2/1+ tanA^2.
1+sin2A= sinA^2+ cosA^2+ 2 sinAcosA.
hence 1+sin2A =(sinA+ cosA)^2 = cosA ^2((tanA+1)^2).
cos2A/1+sin2A= (1-tanA)(1+tanA)/ (secA^2.cosA^2)(1+tanA)(1+tanA)=(1-tanA)/(1+tanA) hence tan45-tanA/1+ tan45tanA
since tan45 is 1 only it can be written as tan(45-A).
hence proved .
please mark it as brainliest
Similar questions