show that cos(2tan inverse 1/7) = sin(4tan inverse1/3)
Answers
Answered by
40
tan α = 1/7
sin α = 1/√(1²+7²) = 1/√50
cos α = 7/√(1²+7²) = 7/√50
β = tan⁻¹(1/3)
tan β = 1/3
sin β = 1/√(1²+3²) = 1/√10
cos β = 3/√(1²+3²) = 3/√10
cos(2 tan⁻¹(1/7))
= cos(2α)
= cos²α − sin²α
= (7/√50)² − (1/√50)²
= 49/50 − 1/50
= 24/25
sin(4 tan⁻¹(1/3))
= cos(4β)
= 2 sin(2β) cos(2β)
= 2 (2 sinβ cosβ) (cos²β − sin²β)
= 4 (1/√10) (3/√10) (9/10 − 1/10)
= 12/10 * 8/10
= 24/25
sin α = 1/√(1²+7²) = 1/√50
cos α = 7/√(1²+7²) = 7/√50
β = tan⁻¹(1/3)
tan β = 1/3
sin β = 1/√(1²+3²) = 1/√10
cos β = 3/√(1²+3²) = 3/√10
cos(2 tan⁻¹(1/7))
= cos(2α)
= cos²α − sin²α
= (7/√50)² − (1/√50)²
= 49/50 − 1/50
= 24/25
sin(4 tan⁻¹(1/3))
= cos(4β)
= 2 sin(2β) cos(2β)
= 2 (2 sinβ cosβ) (cos²β − sin²β)
= 4 (1/√10) (3/√10) (9/10 − 1/10)
= 12/10 * 8/10
= 24/25
Similar questions
Biology,
7 months ago
Computer Science,
7 months ago
Social Sciences,
7 months ago
Biology,
1 year ago
Political Science,
1 year ago
Art,
1 year ago
Math,
1 year ago