Show that cos ( 3π/ 17) cos ( 9π/17) + 1 2 [cos ( 11π/17 ) + cos ( 29π/17 ) ] = 0
Answers
Given : cos ( 3π/ 17) cos ( 9π/17) + (1 /2) [cos ( 11π/17 ) + cos ( 29π/17 ) ] = 0
To Find : Show that
Solution:
cos ( 3π/ 17) cos ( 9π/17) + (1 /2) [cos ( 11π/17 ) + cos ( 29π/17 ) ] = 0
LHS = cos ( 3π/ 17) cos ( 9π/17) + (1 /2) [cos ( 11π/17 ) + cos ( 29π/17 ) ]
Cos C + Cos D = 2 Cos (C + D)/2 Cos ( C - D)/2
C = 29π/17 , D = 11π/17
= cos ( 3π/ 17) cos ( 9π/17) + (1 /2) [2cos ( 20π/17 ) cos (9π/17 ) ]
= cos ( 3π/ 17) cos ( 9π/17) + cos ( π + 3π/17 ) cos (9π/17 )
Cos ( π + α) = - Cosα
= cos ( 3π/ 17) cos ( 9π/17) + (- cos ( 3π/ 17) )cos (9π/17 )
= cos ( 3π/ 17) cos ( 9π/17) - cos ( 3π/ 17) )cos (9π/17 )
= 0
= RHS
QED
Hence proved
Learn More"
Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ
brainly.in/question/10480120
Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...
brainly.in/question/22239477
Maximum value of sin(cos(tanx)) is(1) sint (2)
brainly.in/question/11761816
evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...
brainly.in/question/2769339
Step-by-step explanation:
cos (3π/17) cos (9/17) + (1/2) [cos (11π/ 17) + cos (29π/17)] = 0
LHS = cos (3π/17) сos (9/17) + (1/2) [cos (111/17) + cos (291/17)]
Cos C + Cos D = 2 Cos (C + D)/2 Cos (C -D)/2
C = 29/17, D = 11/17
= cos (3π/17) cos (9/17) + (1/2) [2cos (201/17) cos (9π/17)]
= cos (3π/17) cos (9/17) + cos (π + 3π/ 17) cos (9π/17)
Сos (π + a) = - Cosa
= COS (3π/17) cos (9π/17) + (- сos (3π/ 17) )cos (9π/17)
= cos (3π/17) cos (9/17) - cos (3π/ 17) )cos (9π/17)
= 0
= RHS
QED
Hence proved