show that cos 3 theta - sin 3 theta = (cos theta + sin theta)(1-sin 2 theta)
Answers
Answered by
8
cos3Θ - sin3Θ
=4cos³Θ - 3cosΘ - (3sinΘ - 4sin³Θ)
=4cos³Θ - 3cosΘ - 3sinΘ + 4sin³Θ
=4(cos³Θ + sin³Θ) -3(cosΘ + sinΘ)
=4(cosΘ + sinΘ)(cos²Θ - sinΘcosΘ + sin²Θ) - 3(cosΘ + sinΘ)
=4(cosΘ + sinΘ)(1 - sinΘcosΘ) - 3(cosΘ + sinΘ)
=(cosΘ + sinΘ)(4 - 4sinΘcosΘ -3)
=(cosΘ + sinΘ)(1 - 2sin2Θ)
∴HENCE PROVED
Similar questions