Show that cos?(45°+theta)+cos^2(45° - theta )/tan(60° + theta) tan(30° - theta)=1
Answers
Answered by
0
Answer:
os
2
(45+θ)+cos
2
(45−θ)
=1
Formulas Used:
\begin{gathered}cosA=sin(90-A)\\\\tanA=cot(90-A)\\\\cos^2A+sin^2A=1\\\\tanA.cotA=1\end{gathered}
cosA=sin(90−A)
tanA=cot(90−A)
cos
2
A+sin
2
A=1
tanA.cotA=1
Proof:
Taking Left Hand Side,\begin{gathered}\dfrac{cos^2(45+\theta)+cos^2(45-\theta)}{tan(60+\theta).tan(30-\theta)}\\\\\\=\dfrac{cos^(45+\theta)+sin^2(90-45+\theta)}{tan(60+\theta).cot(90-30+\theta)}\\\\\\=\dfrac{cos^2(45+\theta)+sin^2(45+\theta)}{tan(60+\theta).cot(60+\theta)}\\\\\\=\dfrac{1}{1}\\\\\\=1\end{gathered}
tan(60+θ).tan(30−θ)
cos
2
(45+θ)+cos
2
(45−θ)
=
tan(60+θ).cot(90−30+θ)
cos
(
45+θ)+sin
2
(90−45+θ)
=
tan(60+θ).cot(60+θ)
cos
2
(45+θ)+sin
2
(45+θ)
=
1
1
=1
Right Hand Side = Left Hand Side.
Hence Proved.
Similar questions
Environmental Sciences,
17 days ago
Math,
1 month ago
English,
1 month ago
Math,
9 months ago
Accountancy,
9 months ago