show that cos(60-a)cos(30-b)-sin (60-a) sin(30-b)=sin(a+b)
Answers
Answered by
8
Answer:
Step-by-step explanation:
cos(60-a)cos(30-b)-sin (60-a) sin(30-b)
let A = 60-a ; B = 30-b
=> CosACosB - SinASinB (∵Cos(A-B) = cosACosB - SinASinB)
=> Cos(A+B)
=> Cos(60-a+30-b)
=> Cos(90 - (a+b)) (∵cos(90-θ) = Sinθ)
=> Sin(a + b)
Hence proved
Similar questions