show that cos square 45 degree + theta + cos square 45 degree minus theta upon tan 60 degree + theta tan 30 degree minus theta equals to 1
Answers
Step-by-step explanation:
Given Show that cos square 45 degree + theta + cos square 45 degree minus theta upon tan 60 degree + theta tan 30 degree minus theta equals to 1
- Given cos ^2 (45 + theta ) + cos^2 (45 – theta) / tan (60 + theta) tan (30 – theta)
- = sin^2 (90 – (45 + theta) + cos^2 (45 – theta) / cot (90 – (60 + theta) tan (30 – theta)
- = sin ^2 (45 – theta) + cos^2 (45 – theta) / cot (30 – theta) tan (30 – theta)
- = 1 / 1 (because sin^2 theta + cos^2 theta = 1 and tan theta.cot theta = 1)
- = 1
Reference link will be
https://brainly.in/question/2383300
The given trigonometrical function is proved .
Step-by-step explanation:
Given as :
The trigonometrical function
To prove : = 1
According to question
From the left hand side of given equation
=
∵ Sin ( 90° - Ф ) = Cos Ф , Cot ( 90° - Ф ) = Tan Ф
Or, =
Or, =
∵ Cot Ф =
Or, = ( ∵ Sin²Ф + Cos²Ф = 1 )
∴ = 1
So, Left hand side = Right hand side , proved
Hence, The given trigonometrical function is proved . Answer