show that cos square 45 degree + theta + cos square 45 degree minus theta by tan square 60 degree + theta into tan square 30 degree minus theta is equal to 1
Answers
Answered by
3
To prove :
[cos²(45+∅) + cos²(45-∅) ] / tan(60+∅)×tan(30-∅) =1
Proof :
- L.H.S = [cos²(45+∅) + cos²(45-∅) ] / tan(60+∅)×tan(30-∅)
=[cos²(45+∅) + sin²(90 -(45+∅)) ] / tan(60+∅)×cot(90-(60+∅) )
[CosA=Sin(90-A) ; TanA=Cot(90-A)]
=[cos²(45+∅) + sin²(45+∅) ] / tan(60+∅)×cot(60+∅)
[Cos²A+Sin²A = 1 ; TanA.CotA=1]
= 1/1
=1
- L.H.S = R.H.S
- [cos²(45+∅) + cos²(45-∅) ] / tan(60+∅)×tan(30-∅) =1
Answered by
1
Hope it's help you
plz follow me
mark as a brainlist
Attachments:
Similar questions