Show that (cos theata + isin theata)square = (cos3 theata + isin 3 theata)
Answers
cos3x - sin3x = (cosx + sinx)(1 - 2sin2x)
Step-by-step explanation:
cos3x - sin3x = (cosx + sinx)(1 - 2sin2x)
cos3x = 4cos^3x - 3cosx
sin3x = 3sinx - 4 sin^3x
LHS
= cos3x - sin3x
= 4cos^3x - 3cosx - (3sinx - 4 sin^3x)
= 4(cos^3x + sin^3x) -3(cosx + sinx)
= 4(cosx + sinx)(cos^2x + sin^2x - cosxsinx) - 3(cosx + sinx)
= 4(cosx + sinx)(1 - cosxsinx) - 3(cosx + sinx)
= (cosx + sinx)(4 - 4cosxsinx) - 3(cosx + sinx)
= (cosx + sinx)(4 - 2× 2 cosxsinx) - 3(cosx + sinx)
= (cosx + sinx)(4 - 2sin2x) - 3(cosx + sinx)
= (cosx + sinx)(4 - 2sin2x - 3)
= (cosx + sinx)(1 - 2sin2x)
= rhs
qed
provef
cos3x - sin3x = (cosx + sinx)(1 - 2sin2x)
cos3x - sin3x = (cosx + sinx)(1 - 2sin2x)
Step-by-step explanation:
cos3x - sin3x = (cosx + sinx)(1 - 2sin2x)
cos3x = 4cos^3x - 3cosx
sin3x = 3sinx - 4 sin^3x
LHS
= cos3x - sin3x
= 4cos^3x - 3cosx - (3sinx - 4 sin^3x)
= 4(cos^3x + sin^3x) -3(cosx + sinx)
= 4(cosx + sinx)(cos^2x + sin^2x - cosxsinx) - 3(cosx + sinx)
= 4(cosx + sinx)(1 - cosxsinx) - 3(cosx + sinx)
= (cosx + sinx)(4 - 4cosxsinx) - 3(cosx + sinx)
= (cosx + sinx)(4 - 2× 2 cosxsinx) - 3(cosx + sinx)
= (cosx + sinx)(4 - 2sin2x) - 3(cosx + sinx)
(cosx + sinx)(4 - 2sin2x - 3)
= (cosx + sinx)(1 - 2sin2x)
= rhs
qed
provef
cos3x - sin3x = (cosx + sinx)(1 - 2sin2x)
Mark ❤️