Math, asked by irfanzain786, 11 months ago

show that cos theta/1_sin theta +1_sin theta/cos theta =2 sec theta.​

Answers

Answered by Anonymous
7

Correct question :

 \implies\dfrac{ \cos \theta}{1 -  \sin\theta}  +  \dfrac{1 -  \sin\theta}{ \cos\theta}=2\sec\theta\\

Solution :

 \implies\dfrac{ \cos \theta}{1 -  \sin\theta}  +  \dfrac{1 -  \sin\theta}{ \cos\theta}\\

By taking LCM

 \implies\frac{ { \cos}^{2}\theta +  {(1 -  \sin\theta)}^{2}}{(1 - \sin\theta)( \cos\theta)} \\ \\ \implies\frac{ { \cos}^{2}\theta + {1 - 2 \sin\theta +  \sin}^{2} \theta }{(1 - \sin\theta)( \cos\theta)} \\  \\ \implies \frac{1 + 1 - 2 \sin \theta}{(1 - \sin\theta)( \cos\theta)}  \\  \\ \implies \frac{2 - 2 \sin \theta}{(1 - \sin\theta)( \cos\theta)} \\  \\ \implies  \frac{2( \cancel{1 -  \sin \theta})}{( \cancel{1 - \sin\theta})( \cos\theta)}  \\  \\\implies  \frac{2}{ \cos \theta}  \\  \\\implies \large \boxed{\boxed{2 \sec \theta}}

LHS = RHS

Hence Proved

Answered by AnIntrovert
15

\large\red{\underline{\boxed{\textbf{ Thanks\:For\:Ansking}}}}

LHS = cos theta / 1-sin theta + 1-sin theta / cos theta

= cos theta * cos theta + 1-sin theta * 1-sin theta / cos theta * 1-sin theta

= cos sq theta + 1+ sin sq theta -2sin theta / cos theta * 1-sin theta

= 2 -2sin theta / cos theta * 1-sin theta

=2(1-sin theta )/ cos theta * 1-sin theta

=2/cos theta

= 2 * 1/cos theta

=2 sec theta

= RHS

Hence proved

Similar questions