Math, asked by Adityasoma111666, 9 months ago

show that cos x.cos 2x.cos 4x.cos 8x = sin(2⁴x)/2⁴sin X ,if sin x ≠ 0.​

Answers

Answered by shoryakul1234
2

Answer:

LHS= 1/2sinx[(2sinxcosx)cos2xcos4xcos8x]

=1/2sinx(sin2xcos2xcos4xcos8x)

=1/4sinx[(2sin2xcos2x)cos4xcos8x]

=1/8sinx[(2sin4xcos4x)cos8x]

=1/8sinx(sin8xcos8x)

=1/16sinx(2sin8xcos8x)

=1/16sinx(sin16x)

=sin16x/sin16x

RHS=sin(2^4x)/2^4sinx

=sin16x/sin16x

So, LHS=RHS

Hence Proved

Similar questions