show that cos15°-sin15°/cos15°+sin15° = 1/√3
Attachments:
Answers
Answered by
98
Hi ,
LHS = (cos15- sin15)/(cos15+sin15)
= [(cos15-sin15)(cos 15-sin15)]/[(cos15+sin15)(cos 15-sin15)]
= ( Cos15-sin15 )²/( cos²15 - sin² 15 )
= [cos²15+sin² 15-2sin15cos15]/cos(2×15)
= [ 1 - sin ( 2×15 )]/ cos30
= ( 1 - sin30 ) / cos30
= ( 1 - 1/2 ) / ( √3/2 )
= ( 1/2 ) / ( √3/2 )
= 1/√3
= RHS
I hope this helps you.
: )
LHS = (cos15- sin15)/(cos15+sin15)
= [(cos15-sin15)(cos 15-sin15)]/[(cos15+sin15)(cos 15-sin15)]
= ( Cos15-sin15 )²/( cos²15 - sin² 15 )
= [cos²15+sin² 15-2sin15cos15]/cos(2×15)
= [ 1 - sin ( 2×15 )]/ cos30
= ( 1 - sin30 ) / cos30
= ( 1 - 1/2 ) / ( √3/2 )
= ( 1/2 ) / ( √3/2 )
= 1/√3
= RHS
I hope this helps you.
: )
Answered by
9
On LHS we have = (cos15- sin15)/(cos15+sin15)
= [(cos15-sin15)(cos 15-sin15)]/[(cos15+sin15)(cos 15-sin15)]
= ( Cos15-sin15 )²/( cos²15 - sin² 15 )
= [cos²15+sin² 15-2sin15cos15]/cos(2×15)
= [ 1 - sin ( 2×15 )]/ cos30
= ( 1 - sin30 ) / cos30
= ( 1 - 1/2 ) / ( √3/2 )
= ( 1/2 ) / ( √3/2 )
= 1/√3
= RHS
Hence proved.
Similar questions