Show that:
cos²(45° + ø) + cos²(45° - ø)/
tan(60° + ø) tan(30° - ø)
= 1
Answers
Answered by
4
SOLUTION:
LHS = cos ²(45°+ϴ) + cos²(45° - ϴ) / tan(60° +ϴ) tan(30 - ϴ) = 1
= sin²[90° - (45°+ϴ)]+ cos²(45° - ϴ) / cot [90° - (60° +ϴ)] tan(30 - ϴ)
[ Cosϴ= sin(90°-ϴ) & cot ϴ= tan (90°-ϴ)]
= sin²(45°-ϴ)+ cos²(45° - ϴ) / cot 30° - ϴ)] tan(30° - ϴ)
= 1/1 = RHS
[ sin²ϴ + cos²ϴ= 1 and tanϴcotϴ=1]
HOPE THIS WILL HELP YOU...
Answered by
3
Step-by-step explanation:
:-- cosA = sin(90-A)
:-- tanA= cot(90-A)
:--cos²A + sin²A= 1
:-- tanA . cot A = 1
----------------------------------------
L.H.S
R.H.S
1
therefore LHS= RHS
hence proved
Similar questions