Math, asked by Anonymous, 5 months ago

Show that:
cos²(45° + ø) + cos²(45° - ø)/
tan(60° + ø) tan(30° - ø)
= 1​

Answers

Answered by prabhas24480
4

SOLUTION:

LHS = cos ²(45°+ϴ) + cos²(45° - ϴ) / tan(60° +ϴ) tan(30 - ϴ) = 1

= sin²[90° - (45°+ϴ)]+ cos²(45° - ϴ) / cot [90° - (60° +ϴ)] tan(30 - ϴ)

[ Cosϴ= sin(90°-ϴ) & cot ϴ= tan (90°-ϴ)]

= sin²(45°-ϴ)+ cos²(45° - ϴ) / cot 30° - ϴ)] tan(30° - ϴ)

= 1/1 = RHS

[ sin²ϴ + cos²ϴ= 1 and tanϴcotϴ=1]

HOPE THIS WILL HELP YOU...

Answered by Anonymous
3

Step-by-step explanation:

\fbox { \underline {\underline{important \: points}}}

:-- cosA = sin(90-A)

:-- tanA= cot(90-A)

:--cos²A + sin²A= 1

:-- tanA . cot A = 1

----------------------------------------

L.H.S

 \to \frac{cos²(45+∅) + cos²(45-∅)}{tan(60- ∅)  .tan(30-∅)}  \\  \\  \to \frac{cos²(45+∅) + sin²(90 - 45 + ∅)}{tan(60+∅) .cot(90 - 30 + ∅)}  \\  \\  \to \:  \frac{cos²(45+∅) + sin²(45 + ∅)}{tan(60+∅) .cot(60+ ∅)}   \\  \\ \to \:  \frac{1}{1}  = 1 =  \bold{R.H.S}

R.H.S

1

therefore LHS= RHS

hence proved

Similar questions