Math, asked by nikitha1104, 1 year ago

show that cos²π/8+cos²3π/8+cos²5π/8+cos²7π/8=2​

Answers

Answered by anshi2020
6

cos2A≡2cos²A-1 so cos²A≡½(1+cos2A).

Therefore, we can substitute for the squares of the cosines:

cos²(π/8)=½(1+cos(π/4))=½(1+√2/2);

cos²(3π/8)=½(1+cos(3π/4))=½(1-√2/2);

cos²(5π/8)=½(1+cos(5π/4))=½(1-√2/2);

cos²(7π/8)=½(1+cos(7π/4))=½(1+√2/2);

Add these together and we get the result 4/2=2 QED

hope it helps !!

{mark as brainiest please}

Answered by Swarnimkumar22
28

Solution-

LHS =

 \bf \:  {cos}^{2}  \frac{\pi}{8}  +  {cos}^{2}  \frac{3\pi}{8}  +  {cos}^{2}  \frac{5\pi}{8}  +  {cos}^{2}  \frac{7\pi}{8}

 =  \sf \:  {cos}^{2}  \frac{\pi}{8}  +  {cos}^{2}  \frac{3\pi}{8}  +  {cos}^{2}  \left[\pi -  \frac{3\pi}{8}  \right]  +  {cos}^{2} \left[ \pi -  \frac{\pi}{8} \right] \\  \\  =  \sf \:  {cos}^{2}  \frac{\pi}{8}  +  {cos}^{2}  \frac{3\pi}{8}  + \left[  - cos \frac{3\pi}{8} \right]^{2}  +  {\left[  - cos \frac{\pi}{8} \right]}^{2}  \\  \\  =  \sf \:  {cos}^{2}  \frac{\pi}{8}  +  {cos}^{2}  \frac{3\pi}{8}  +  {cos}^{2}  \frac{3\pi}{8}  +  {cos}^{2}  \frac{\pi}{8}  \\  \\  =  \sf \: 2 {cos}^{2}  \frac{\pi}{8}  + 2 {cos}^{2}  \frac{3\pi}{8}  \\  \\  =  \sf \: \left[1 + cos \frac{\pi}{8}  \right] + \left[ 1 + cos \frac{3\pi}{8} \right] \\  \\  \sf \because \: 2 {cos}^{2} x = 1 + cos2x \\  \\  =  \sf \: 2 +  \frac{1}{ \sqrt{2} }  + \left[  -  \frac{1}{ \sqrt{2} } \right] \\  \\  =  \sf \: 2

Similar questions