Math, asked by muditas68, 10 months ago

show that cos²x+cos²(x+60)+cos²(x-60)=3/2​

Answers

Answered by sandy1816
7

Step-by-step explanation:

we know cos2x+1=2cos²x

cos²x=cos2x+1/2.......(1)

replacing x by (x+60)

cos²(x+60)=cos2(x+60)+1/2

=cos(2x+120)+1/2........(2)

again, replace x by (x-60)

cos²(x-60)=cos(2x-120)+1/2.......(3)cos2

LHS:

cos²x+cos²(x+60)+cos²(x-60)

=1+cos2x/2+1+cos(2x+120)/2 +cos2x(2x-120)/2

=1/2[1+cos2x+1+cos(x+60)+1+ cos(x-60)]

=1/2[3+cos2x+2cos(2x+120+2x-120)/2 +2cos(2x+120-2x+120)/2]

=1/2[3+cos2x+2cos2xcos120]

=1/2[3+cos2x+2cos2xcos(180-60)]

=1/2[3+cos2x-2cos2xcos60]

=1/2[3+cos2x-2cos2x.1/2]

=1/2[3+cos2x-cos2x]

=1/2[3]

=3/2

Similar questions
English, 5 months ago