Math, asked by qrgqg2tbgw, 3 days ago

show that: cos³A+sin³A/cosA+sinA + cos³A-sin³A/cosA-sinA=2​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA} + \dfrac{ {cos}^{3}A -  {sin}^{3}A}{cosA - sinA}

Consider,

\red{\rm :\longmapsto\:\dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA}}

We know,

\red{ \boxed{ \sf{ \: {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} +  {y}^{2} - xy)}}}

So, using this identity, we get

 \red{\rm \:  =  \: \dfrac{ \cancel{(cosA + sinA)} \:  \: ( {cos}^{2}A +  {sin}^{2}A - cosAsinA) }{ \cancel{cosA + sinA}} }

 \red{\rm \:  =  \:  {cos}^{2}A +  {sin}^{2}A - sinAcosA}

 \red{\rm \:  =  \: 1 - sinAcosA}

Hence,

\red{\bf :\longmapsto\:\dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA} = 1 - sinAcosA}

Now, Consider

\purple{\rm :\longmapsto\:\dfrac{ {cos}^{3}A  -   {sin}^{3}A}{cosA  -  sinA}}

We know,

\purple{ \boxed{ \sf{ \: {x}^{3} -  {y}^{3}  = (x - y)( {x}^{2}  +  {y}^{2}  + xy)}}}

So, using this identity, we get

 \purple{\rm \:  =  \: \dfrac{ \cancel{(cosA  -  sinA)} \:  \: ( {cos}^{2}A +  {sin}^{2}A + cosAsinA) }{ \cancel{cosA  - sinA}} }

 \purple{\rm \:  =  \:  {cos}^{2}A +  {sin}^{2}A  + sinAcosA}

 \purple{\rm \:  =  \:  1 + sinAcosA}

Hence,

\purple{\bf :\longmapsto\:\dfrac{ {cos}^{3}A  -   {sin}^{3}A}{cosA  -  sinA} = 1 + sinAcosA}

Now Consider,

\rm :\longmapsto\:\dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA} + \dfrac{ {cos}^{3}A -  {sin}^{3}A}{cosA - sinA}

On substituting the values evaluated above, we get

\rm \:  =  \: 1 - sinAcosA + 1 + sinAcosA

\rm \:  =  \: 2

Hence,

\red{\bf\implies \: \boxed{ \sf{ \:\:\dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA} + \dfrac{ {cos}^{3}A -  {sin}^{3}A}{cosA - sinA}  = 2}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions