show that cos42+cos78+cos162=0 give explanation
Attachments:
Answers
Answered by
124
Cos 42 + cos 78 + cos 162
= cos(60 – 18)+ cos(60+18)+cos(180-18)
now apply formula
=========================================
= cos 60 . cos 18 + sin 60 . sin 18 + cos 60 . cos 18 – sin60.sin 18 – cos 18
= 2cos 60 . cos 18 – cos 18
= 2. ½ . cos 18 – cos 18 =0
Hope it's helpful
= cos(60 – 18)+ cos(60+18)+cos(180-18)
now apply formula
=========================================
= cos 60 . cos 18 + sin 60 . sin 18 + cos 60 . cos 18 – sin60.sin 18 – cos 18
= 2cos 60 . cos 18 – cos 18
= 2. ½ . cos 18 – cos 18 =0
Hope it's helpful
Answered by
34
First, solve cos42 + cos78
As we know
cos A + cos B = 2 cos( A + B/ 2 ) cos( A − B /2 )
so cos42+cos78=2cos60cos18=cos18
Now whats left is cos18+cos162
Use the formula again:
cos18+cos162=2cos(18+162/2)cos(162-18/2)
=2cos(90)cos(72)=zero as cos(90)=0
======================M
As we know
cos A + cos B = 2 cos( A + B/ 2 ) cos( A − B /2 )
so cos42+cos78=2cos60cos18=cos18
Now whats left is cos18+cos162
Use the formula again:
cos18+cos162=2cos(18+162/2)cos(162-18/2)
=2cos(90)cos(72)=zero as cos(90)=0
======================M
Similar questions