Show that cos42°+cos78°+cos162°=0.
Answers
Answered by
6
Answer:
Using cosA + cosB = 2 cos(½(A+B)) cos(½(A-B)), we can write
cos42° + cos78° = 2 cos60° cos18°
= 2 . ½ . cos18° (since cos60° = ½)
= cos18°
So, we have
cos42° + cos78° = cos18° --------(1)
Also, cos(180°-A) = -cosA.
Therefore,
cos162° = cos(180°-18°) = -cos18°-----(2)
Using (1) and (2),
cos42° + cos78° + cos162° = cos18° + (-cos18°) = 0
Hence proved.
Anonymous:
ok
Similar questions