Math, asked by rakkirakshitha15, 11 months ago

show that coscosA/1-tantanA+sinsinA/1-cotA=sinA+cosA​

Answers

Answered by sahil17292592004
4

Answer:

Proved below:

Step-by-step explanation:

CORRECT QUESTION:

Show that

\frac{cosA}{1-tanA} +\frac{sinA}{1-cotA}=sinA+cosA

=\frac{   cosA  } { 1-\frac{sinA}{cosA}       } + \frac { sinA   } {  1-\frac{cosA}{sinA}   }\\ \\ =\frac{   cosA  } { \frac{cosA-sinA}{cosA}       } + \frac { sinA   } {  \frac{sinA-cosA}{sinA}   }\\ \\\\=\frac{cos^{2}A}{cosA-sinA}+\frac{sin^{2}A}{sinA-cosA}\\\\= \frac{cos^{2}A}{cosA-sinA}+\frac{sin^{2}A}{-[cosA-sinA]}\\\\\=\frac{cos^{2}A}{cosA-sinA}-\frac{sin^{2}A}{cosA-sinA}\\\\=\frac{cos^{2}A-sin^{2}A}{cosA-sinA}\\\\=\frac{(cosA-sinA)(cosA+sinA)}{cosA-sinA}\;\;\;\;

=\frac{cos^a}{cosA-sinA}-\frac{cos^a}{cosA-sinA}

=\frac{cos^a-sin^{2}A}{cosA-sinA}= \frac{[cosa+sinA][cosA-sinA]}{cosA-sinA}

{     because   a^{2}-b^{2}=[a+b][a-b]       }

=cosA+sinA=sinA+cosA

Learning\;\;Together\;:)

Answered by lublana
0

Answer:

Step-by-step explanation:

LHS

\frac{cosA}{1-tanA}+\frac{sinA}{1-cotA}

\frac{cosA}{1-\frac{sinA}{cosA}}+\frac{sinA}{1-\frac{cosA}{sinA}}

Using tanA=\frac{sinA}{cosA}

cotA=\frac{cosA}{sinA}

\frac{cos^2A}{cosA-sinA}-\frac{sin^2A}{cosA-sinA}

\frac{cos^2A-sin^2A}{cosA-sinA}

\frac{(cosA-sinA)(cosA+sinA)}{cosA-sinA}

Using property

(a^2-b^2)=(a+b)(a-b)

cosA+sinA

LHS=RHS

#Learns more:

https://brainly.in/question/753217 Answered by Qais

Similar questions