Math, asked by BrainlyHelper, 1 year ago

show that
Cosec ²A - tan²(90-A)= sin²A +sin(90-A)
(class 10 CBSE SAMPLE PAPER 2017-18 MATHS)

Answers

Answered by nikitasingh79
19
SOLUTION:

cosec²A - tan²(90°-A)= sin²A +sin(90°-A)

LHS=Cosec ²A - tan²(90°-A)

= 1/sin²A - sin²(90°-A)/ cos²(90°-A)

[ cosecA= 1/sinA, tanA= sinA/cosA]

= 1/sin²A - sin²(90°-A)/ sin²A

[ cos(90°-A)= sinA]

= 1/sin²A - cos²A/sin²A

[ sin(90°-A)= cosA]

= 1-cos²A/sin²A

= sin²A/sin²A

[ 1-cos²A= sin²A]

= 1
= sin²A + cos²A        [1=  sin²A + cos²A ]

=  sin²A + sin²(90°-A)

= RHS

HOPE THIS WILL HELP YOU.....

Jahnavi444: How can u add sin²(90-A) at the end when there is only sin(90-A) in the question.
nikitasingh79: mistake is in the question...
Anonymous: why wrong question is posted??
Similar questions