Math, asked by karunyakanthkarnati, 3 months ago

show that (cosec¶-cot¶)^2=1-cos¶/1+cos¶​

Answers

Answered by ashwin2011
2

Answer:

cosec is 1÷cos so minus and plus cancel

Answered by MrImpeccable
2

ANSWER:

To Prove:

  • (cosec ө - cot ө)² = (1 - cos ө)/(1 + cos ө)

Proof:

We need to prove that,

⇒ (cosec ө - cot ө)² = (1 - cos ө)/(1 + cos ө)

\implies(\csc\theta-\cot\theta)^2=\dfrac{1-\cos\theta}{1+\cos\theta}

Taking and solving LHS,

\implies(\csc\theta-\cot\theta)^2

We know that,

⇒ cosec A = 1/sin A

And,

⇒ cot A = cos A/sin A

So,

\implies\left(\dfrac{1}{\sin\theta}-\dfrac{\cos\theta}{\sin\theta}\right)^2

\implies\left(\dfrac{1-\cos\theta}{\sin\theta}\right)^2

So,

\implies\dfrac{(1-\cos\theta)^2}{(\sin\theta)^2}

\implies\dfrac{(1-\cos\theta)^2}{\sin^2\theta}

We know that,

⇒ sin²A = 1 - cos²A

So,

\implies\dfrac{(1-\cos\theta)^2}{\sin^2\theta}

\implies\dfrac{(1-\cos\theta)^2}{1-\cos^2\theta}

We know that,

⇒ a² - b² = (a + b)(a - b)

Hence,

\implies\dfrac{(1-\cos\theta)^2}{1^2-\cos^2\theta}

\implies\dfrac{(1-\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)}

Cancelling (1 - cos ө) in the fraction,

\implies\bf\dfrac{1-\cos\theta}{1+\cos\theta}

As, LHS = RHS,

HENCE PROVED.!!!

Similar questions