Show that (cosec theta-cot theta) 2 =1-cos theta/ 1+cos theta
Answers
Answered by
122
(cosecA-cotA)^2=1-cosA÷1+cosA
(1/sinA-cosA/sinA)^2
(1-cosA÷sinA)^2
(1-cosA)^2÷sin^2A
(1-cosA)(1-cosA)÷1-cos^2A
(1-cosA)(1-cosA)÷(1-cosA)(1+cosA)
(1-cosA)÷(1+cosA) proved
(1/sinA-cosA/sinA)^2
(1-cosA÷sinA)^2
(1-cosA)^2÷sin^2A
(1-cosA)(1-cosA)÷1-cos^2A
(1-cosA)(1-cosA)÷(1-cosA)(1+cosA)
(1-cosA)÷(1+cosA) proved
Answered by
183
Answer:
We have to prove,
L.H.S.
( Because, cosec A = 1/sin A and cot A = cos A/sin A )
( Because, sin² A = 1 - cos² A )
= R.H.S.
Hence, proved.
Similar questions