Math, asked by DHRUVMAHAJAN1799, 1 year ago

Show that (cosec theta-cot theta) 2 =1-cos theta/ 1+cos theta

Answers

Answered by 8539935298
122
(cosecA-cotA)^2=1-cosA÷1+cosA
(1/sinA-cosA/sinA)^2
(1-cosA÷sinA)^2
(1-cosA)^2÷sin^2A
(1-cosA)(1-cosA)÷1-cos^2A
(1-cosA)(1-cosA)÷(1-cosA)(1+cosA)
(1-cosA)÷(1+cosA) proved
Answered by parmesanchilliwack
183

Answer:

We have to prove,

(cosec \theta - cot \theta)^2 = \frac{1-cos \theta}{1+cos \theta}

L.H.S.

(cosec \theta - cot \theta)^2

=(\frac{1}{sin \theta}-\frac{cos \theta}{sin\theta})^2

( Because, cosec A = 1/sin A and cot A = cos A/sin A )

=(\frac{1-cos \theta}{sin \theta})^2

=\frac{(1-cos \theta)^2}{sin^2\theta}

=\frac{(1-cos \theta)^2}{1-cos^2 \theta}

( Because, sin² A = 1 - cos² A )

=\frac{(1-cos \theta)^2}{(1-cos \theta)(1+cos \theta)}

=\frac{1-cos \theta}{1+cos \theta}

= R.H.S.

Hence, proved.

Similar questions