Math, asked by poornimavainala123, 9 months ago

show that (cosec theta-cot theta)square=1- cos theta/1+cos theta.​

Answers

Answered by lakshmic064
0

Answer:

Above is the solution for your question

Step-by-step explanation:

l hope it is helpful

Attachments:
Answered by itzRealQueen
2

Answer:

Step-by-step explanation:

Answer:-

\huge{\rm{\pink{\underline{Given:-}}}}

Given:−

\sf{Cosec \theta + Cot \theta = m}Cosecθ+Cotθ=m

\huge{\rm{\pink{\underline{To \ prove:-}}}}

To prove:−

\sf{(m^2+1)Cos \theta = m^2 -1}(m

2

+1)Cosθ=m

2

−1

Concept:-

Trigonometry and its applications.

Let's Do!

\sf{(m^2+1)Cos \theta = m^2 -1}(m

2

+1)Cosθ=m

2

−1

\sf{Cos \theta = \dfrac{m^2 -1}{(m^2+1)}}Cosθ=

(m

2

+1)

m

2

−1

(1)

\sf{Cosec \theta + Cot \theta = m}Cosecθ+Cotθ=m

\sf{\dfrac{1}{sin \theta} + \dfrac{cos \theta }{sin \theta} = m}

sinθ

1

+

sinθ

cosθ

=m

\sf{\dfrac{1 + cos \theta}{sin \theta} = m}

sinθ

1+cosθ

=m (2)

Placing value of (2) in (1),

Numerator:-

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 - 1 }(

sinθ

1+cosθ

)

2

−1

\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} - 1 }

sin

2

θ

(1+cosθ)

2

−1

\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} - 1 }

sin

2

θ

(1+cos

2

θ+2cosθ)

−1

\sf{\dfrac{1 + cos^2 \theta+2cos \theta - sin^2 \theta}{sin^2 \theta}}

sin

2

θ

1+cos

2

θ+2cosθ−sin

2

θ

\sf{\dfrac{cos^2 \theta + cos^2 \theta+2cos \theta }{sin^2 \theta}}

sin

2

θ

cos

2

θ+cos

2

θ+2cosθ

\sf{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}

sin

2

θ

2cos

2

θ+2cosθ

Denominator:-

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 + 1 }(

sinθ

1+cosθ

)

2

+1

\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} + 1 }

sin

2

θ

(1+cosθ)

2

+1

\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} + 1 }

sin

2

θ

(1+cos

2

θ+2cosθ)

+1

\sf{\dfrac{1 + cos^2 \theta+2cos \theta + sin^2 \theta}{sin^2 \theta}}

sin

2

θ

1+cos

2

θ+2cosθ+sin

2

θ

\sf{\dfrac{1 +1+2cos \theta}{sin^2 \theta}}

sin

2

θ

1+1+2cosθ

\sf{\dfrac{2+2cos \theta}{sin^2 \theta}}

sin

2

θ

2+2cosθ

Now, combining both:-

\sf{\dfrac{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}{\dfrac{2+2cos \theta}{sin^2 \theta}}}

sin

2

θ

2+2cosθ

sin

2

θ

2cos

2

θ+2cosθ

Now, sin² theta gets cancelled.

\sf{\dfrac{2 cos^2 \theta + 2 cos \theta }{2+2 cos \theta}}

2+2cosθ

2cos

2

θ+2cosθ

\sf{\dfrac{2 cos \theta( cos \theta +1)}{2(1+ cos \theta)}}

2(1+cosθ)

2cosθ(cosθ+1)

2 gets cancelled, 1 + cos theta cancelled, so left is cos theta.

Hence Proved

Similar questions