Math, asked by keval1133, 3 months ago

Show that costheta/1-sintheta+1-sintheta/costheta=2sectheta

Answers

Answered by vipashyana1
0

Answer:

 \frac{cosθ}{1 - sinθ}  +  \frac{1 - sinθ}{cosθ} = 2secθ \\   \frac{ {(cosθ)}^{2} +  {(1 - sinθ)}^{2}}{cosθ(1 - sinθ)}  = 2secθ \\  \frac{ {cos}^{2} θ + 1 - 2sinθ +  {sin}^{2} θ}{cosθ(1 - sinθ)}  = 2secθ \\  \frac{ {cos}^{2} θ +  {sin}^{2}θ + 1 - 2sinθ}{cosθ(1 - sinθ)} = 2secθ \\  \frac{1 + 1 - 2sinθ}{cosθ(1 - sinθ)}   = 2secθ \\  \frac{2  -  2sinθ}{cosθ(1 - sinθ)}  = 2secθ \\  \frac{2(1 -sin θ)}{cosθ(1 - sinθ)}  = 2secθ \\  \frac{2}{cosθ}  = 2secθ \\ 2 \times  \frac{1}{cosθ}  = 2secθ \\ 2secθ = 2secθ \\ LHS=RHS \\ Hence  \: proved

Similar questions