Math, asked by laluprasad8030, 1 year ago

show that costita+cos(120+tita)+cos(240+tita)=0​

Answers

Answered by hancyamit2003
0

Answer:

Step-by-step explanation:

LHS= CosA+Cos(120+A)+Cos(240+A)

=CosA+Cos{180-(60-A)}+Cos{180+(60+A)}

=CosA-Cos(60-A)-Cos(60+A)

=CosA-{cos60cosA+Sin60SinA}-{Cos60CosA-Sin60SinA}

=CosA-(CosA/2)-(√3/2)SinA-(CosA/2)+(√3/2)SinA

=CosA-(2CosA/2)

={2CosA-2 CosA}/2

=0

Therefore LHS=RHS

Similar questions