show that cosx.cos2x.cos4x.cos8x=sin((2²)²x/(2²)²sinx
Answers
Answered by
9
Remember : 2 sin(p) cos(p) = sin(2p)
Let,
A = cos(x) cos(2x) cos(4x) cos(8x)
2 sin(x) A = 2 sin(x) cos(x) cos(2x) cos(4x) cos(8x)
2 sin(x) A = sin(2x) cos(2x) cos(4x) cos(8x)
4 sin(x) A = 2 sin(2x) cos(2x) cos(4x) cos(8x)
4 sin(x) A = sin(4x) cos(4x) cos(8x)
8 sin(x) A = 2 sin(4x) cos(4x) cos(8x)
8 sin(x) A = sin(8x) cos(8x)
16 sin(x) A = 2 sin(8x) cos(8x)
16 sin(x) A = sin(16x)
And,
Replacing 16 in terms of powers of 2
Let,
A = cos(x) cos(2x) cos(4x) cos(8x)
2 sin(x) A = 2 sin(x) cos(x) cos(2x) cos(4x) cos(8x)
2 sin(x) A = sin(2x) cos(2x) cos(4x) cos(8x)
4 sin(x) A = 2 sin(2x) cos(2x) cos(4x) cos(8x)
4 sin(x) A = sin(4x) cos(4x) cos(8x)
8 sin(x) A = 2 sin(4x) cos(4x) cos(8x)
8 sin(x) A = sin(8x) cos(8x)
16 sin(x) A = 2 sin(8x) cos(8x)
16 sin(x) A = sin(16x)
And,
Replacing 16 in terms of powers of 2
Similar questions