Math, asked by Ehsanul885, 1 month ago

Show that cot 2x cot x - cot 3x cot 2x - cot 3x cot x = 1.

Answers

Answered by rajeevk2531
1

Answer:

cot x cot 2x - cot 2x cot 3x - cot 3x cot 4x 

= cot x cot 2x - cot 3x (cot 2x+ cot x)

= cot x cot 2x - cot (2x+x)(cot 2x+ cot x)

[ as cot(A+B)=cotAcotBcotAcotB−1]

= cot x cot 2x-(cotx+cot2xcot2xcotx−1)(cot 2x+ cot x)

= cot x cot 2x- (cot 2x cot x-1)

= cot x cot 2x- cot 2x cot x+1

= 1

Hence, proved

Answered by brainlyehsanul
108

Step-by-step explanation:

Solution :

We have,

 \:  \:  \:  \:  \:  \:  \:  \cot3x =  \cot(2x + x)

 =  >  \cot3x =  \frac{ \cot2x \cot \: x - 1  }{ \cot2x +  \cot \: x }

 =  >  \cot3x \cot2x +  \cot3x \cot \: x =  \cot2x \cot \: x  - 1

 =  >  \cot2x \cot \: x -  \cot3x \cot2x -  \cot3x \cot \: x = 1.

Hence :

Proved.

Similar questions