Math, asked by gautamsaurav189, 18 hours ago

Show that cot 2x cot x-cot 3x cot2x-cot3x cot x=1​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

We know,

\rm \: 3x = 2x + x \\

So,

\rm \: cot3x = cot(2x + x) \\

We know,

\boxed{ \rm{ \:cot(x + y) =  \frac{cotx \: coty \:  -  \: 1}{coty + cotx} \: }} \\

So, using this result, above can be rewritten as

\rm \: cot3x =  \dfrac{cot2x \: cotx \:  -  \: 1 }{cot2x + cotx}  \\

\rm \: cot3xcot2x + cot3xcotx = cot2xcotx - 1 \\

On transposition, we get

\rm \: cotxcot2x - cot2xcot3x - cot3xcotx = 1 \\

Hence,

\rm\implies \boxed{ \rm{cotxcot2x - cot2xcot3x - cot3xcotx = 1}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x  -  y) = sinx \: cosy \:  -  \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: -  \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by talpadadilip417
16

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

\begin{array}{l}  \displaystyle \rm\cot 3 x=\cot (2 x+x)=\frac{\cot 2 x \cot x-1}{\cot x+\cot 2 x}  \qquad\qquad \left[\because \cot (A+B)=\frac{\cot A \cot B-1}{\cot B+\cot A}\right] \\ \\ \displaystyle \rm \Rightarrow \quad \quad \cot 3 x(\cot x+\cot 2 x)=\cot 2 x \cot x-1 \\ \\ \displaystyle \rm \Rightarrow \quad \cot 3 x \cot x+\cot 3 x \cot 2 x=\cot 2 x \cot x-1 \\ \\ \displaystyle \rm \Rightarrow \quad \cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1 \end{array}

Similar questions